Q1.

7	(a)		electrons fired at metal target	[5]
	(b)	(i)	increase cathode/tube currentB1	
		(ii)	increase anode voltageB1	
		(iii)	use aluminium filter (allow metal filter)	[3]
	(c)		$I = I_0 e^{-\mu x}$	
			$\mu = 1.733 \text{ cm}^{-1} \text{ or } = \ln 2/0.4$ C1 0.1 = $e^{-1.733x}$	
			x = 1.33 cm	[3]
Q2.				
8	(a)		produces greater intensity (at focus) limits region of cell damage allows for accurate guidance	[2]
	(b)		laser beam cauterises tissue can produce coagulation vaporisation of water in cells	[2]
Q3.				
9	(a)		ability to detect (small) changes in loudness/intensity	[2]
	(b)		$\Delta I.L. = 10 \lg(\Delta I/I) \text{ or } I.L. = 10 \lg(I/I_0)$ C1 3.0 = 10 lg $(I_2/(4.5 \times 10^{-5})$ C1	
			$I_2 = 9.0 \times 10^{-5} \text{ Wm}^{-2}$, $\Delta I = 4.5 \times 10^{-5} \text{ W m}^{-2}$	[3]

Q4.

9	(a) X-ray beam directed through body onto detector (plate) different tissues absorb/attenuate beam by different amounts giving 'shadow' image of structures any other detail e.g. comment re sharpness or contrast						[4]
	(b)	CT scan takes these build up series of image so that 3D ima	flat OR 2-dimensional (1) many images of a slice at differe an image of a slice through the bo es of slices is made (1) ge can be built up (1) n be rotated (1) h point, max 5			B5	[5]
Q5.							
10	nuc		tant) magnetic field direction of field / precess . pulse	(1)		B1 B1	
	(pullon redeted non allowand	ses resonance i se) is at the Lar elaxation / nucle ected <u>and</u> proce -uniform field (s ws for position of for location of d	n nuclei , nuclei absorb energy mor frequency ei de-excite emit (pulse of) r.f. ssed	(1) (1)		B1 B1 B1 B1	[8]
			1 .			111	
Q6.							
11	(a)	received / dete signal process time between t (information ab reflected intens	ound undaries / boundary cted (at surface) by transducer ed and displayed ransmission and receipt of pulse bout) depth of boundary sity gives information as to nature s, 1 each, max 4)		(1) (1) (1) (1) (1)	В4	[4]
	(b)	(i) coefficient	= $(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ = $(6.3 - 1.7)^2 / (6.3 + 1.7)^2$ = 0.33 (unit quoted, then -1)			C1 A1	
		(ii) fraction	= $\exp(-\mu x)$ = $\exp(-23 \times 4.1 \times 10^{-2})$ = 0.39			C1 A1	
	,	(iii) intensity	$= 0.33 \times 0.39^{2} \times I$ $= 0.050 I$			C1 A1	
		(do not all	ow e.c.f. from (i) and (ii) if these a	answers are grea	ater than 1)	Α.	[4]

10	(a)	X-ray taken of slice / plane / section repeated at different angles images / data is processed combined / added to give (2-D) image of slice repeated for successive slices to build up a 3-D image image can be viewed from different angles / rotated	B1 B1 B1 B1 B1 B1 max 6	[6]	
	(b)	(i) 16	A1	[1]	
		(ii) evidence of deducting 16 then dividing by 3 to give 3 2 6 5	C1 A1	[2]	
Q8.					
opposite faces /two sides coated (with silver) to act as electrodes either molecular structure indicated or centres of (+) and (-) charge not coincident potential difference across crystal causes crystal to change shape alternating voltage (in US frequency range) applied across crystal causes crystal to oscillate / vibrate (crystal cut) so that it vibrates at resonant frequency					
Q9.	(max	c 6)			
	(2)	product of density (of medium) and speed of sound (in the medium)	B1	[1]	
10		α would be nearly equal to 1	M1	[1]	
	(13)	either reflected intensity would be nearly equal to incident intensity or coefficient for transmitted intensity = $(1 - \alpha)$ transmitted intensity would be small	M1 A1	[3]	
	(c)	(i) $\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]	
		(ii) attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ 0.012 = 0.018 $\exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3]	

Q10.

10 strong / large (uniform) magnetic field nuclei precess / rotate about field direction radio frequency pulse at Larmor frequency causes resonance / nuclei absorb energy on relaxation / de-excitation, nuclei emit r.f. pulse pulse detected and processed non-uniform field superposed on uniform field allows position of resonating nuclei to be determined allows for location of detection to be changed (1) (six points, 1 each plus any two extra – max 8)						[8]
Q11	•					
11	(a)	(i)	e.m. radiation produced whenever charged particle is accelectrons hitting target have distribution of accelerations	elerated	M1 A1	[2]
		(ii)	either wavelength shorter/shortest for greater/greatest a $\lambda_{\min} = hc/E_{\max}$ or minimum wavelength for maximum energy all electron energy given up in one collision/converted to see		B1 B1	[2]
	(b)	(i)	hardness measures the penetration of the beam greater hardness, greater penetration		C1 A1	[2]
		(ii)	controlled by changing the anode voltage higher anode voltage, greater penetration/hardness		C1 A1	[2]
	(c)	(i)	likely to penetrate through body	ne body/less	B1 B1	[1]
Q12		(ii)	(aluminium) filter/metal foil placed in the X-ray beam		ы	[1]
۷.۲	•					
12	(a)	stro	ong uniform (magnetic) field ner aligns nuclei		M1	
		or	gives rise to Larmor/resonant frequency in r.f. region- n-uniform (magnetic) field	<u>1</u>	A1 M1	
		or	changes the Larmor/resonant frequency		A1	[4]
	(b)	(i)	difference in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-3}$	< 10 ^{−5} T	A1	[1]
		(ii)	$\Delta f = 2 \times c \times \Delta B$ = 2 \times 1.34 \times 10^8 \times 6.0 \times 10^{-5}		C1	
			- 2 ^ 1.34 ^ 10		۸1	[2]

Q13.

10	(a)	e.g.	abs	m is divergent/obeys inverse square law orption (in block) ttering (of beam in block)				
		(an		ection (at boundaries) o sensible suggestions, 1 each)	B2			[2]
	(b)	(i)		= $I_0 \exp(-\mu x)$ = $\exp(0.27 \times 2.4)$ = 1.9	C1 A1			[2]
		(ii)		= $\exp(0.27 \times 1.3) \times \exp(3.0 \times 1.1)$ = 1.42×27.1 = 38.5	C1 A1			[2]
	(c)		er	much greater absorption in bone than in soft tissue				: 5,87%
Q14.		or		I_{\circ}/I much greater for bone than soft tissue	B1			[1]
Q 14.	•							
10) (a			ess: how well the edges (of structures) are defined : difference in (degree of) blackening between structures		B1 B1		[2]
	(b	e.g	larg	ttering of photos in tissue/no use of a collimator/no use of lead grid le penumbra on shadow/large area anode/wide beam le pixel size ly two sensible suggestions, 1 each)		B2		[2]
			(arry	y two sensible suggestions, i each)		DZ		[2]
	(c) (i)	<i>I</i> =	$I_0 \mathrm{e}^{-\mu \mathrm{x}}$		C1		
				$0 = \exp(-2.85 \times 3.5) / \exp(-0.95 \times 8.0)$ = $(4.65 \times 10^{-5}) / (5.00 \times 10^{-4})$		C1		
				= 0.093		A1		[3]
		(ii)	eith or	er large difference (in intensities) ratio much less than 1.0		M1		
				good contrast		A1		[2]
			(ans	swer given in (c)(ii) must be consistent with ratio given in (c)(i))				
Q15.	•							
10	(a)			f density and speed of sound / wave f medium and) speed of sound / wave in medium	M1 A1		[2]	
	(b)	if (Z ₁	- Z ₂)	is small, mostly transmission is large, mostly reflection (if 'mostly' not stated allow 1/2 marks for these first two marks)	M1 M1			
		eithe or	r	reflection / transmission also depends on $(Z_1 + Z_2)$ intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$	A1		[3]	
	(c)			er structures can be distinguished better resolution at shorter wavelength / higher frequency	B1		[2]	

Q16.

	11	(a			g voltage changes energy / speed of <u>electrons</u> g electron energy changes maximum X-ray photon energy		M1 A1	[2]
		(b) (i)	1.	loss of power / energy / intensity		B1	[1]
				2.	intensity changes when beam not parallel decreases when beam is divergent		C1 A1	[2]
			(ii)		$0 = (\exp \{-2.9 \times 2.5\}) / (\exp \{-0.95 \times 6.0\})$ $= 0.21 \text{ (min. 2 sig. fig.)}$ The sum of t).985 scores 1	C1 A1 mark)	[2]
Q1	7 .							
9		(a)	prod	uct o	f density (of medium) and speed of sound (in medium)		<mark>B1</mark>	[1]
			deter	rmine	e in acoustic impedancees fraction of incident intensity lected/amount of reflection			[2]
			reflectime	cted cted for re	altrasound (directed into body) at boundary (between tissues) pulse is) detected and processed eturn of echo gives (information on) depth f reflection gives information on tissue structures		B1 B1 B1	[5]
Q1	8.							
1	11	(a)	any	furth	e: (thin) slice (through structure) er detail e.g. built up from many 'slices' / 3-D image age: 'shadow' image (of whole structure) / 2-D image	E	31 31 31	[3]
		(b)	thes repe to be 3-D com	eated uild u imag pute	age of slice taken from many different angles ages are combined (and processed) for many different slices up a 3-D image ge can be rotated r required to store and process huge quantity of data 1 each to max 5)	(1) (1) (1) (1) (1) (1)	35	[5]

Q19.

11	large / 1 T magnetic field applied along body (allow 'across') (1) r.f. pulse applied												
	any six points, one mark each												
			[Total:	: 6]									
Q20).												
10	(a)	(i)	e.m. radiation / photons is produced whenever a charged particle is accelerated	[3]									
		(ii)	either when electron loses all its energy in one collision or when energy of electron produces a single photon	[1]									
	(b)	(i)	parallel beam (in matter) B1 $I = I_0 \exp(-\mu x)$ M1 $I, I_0, (\mu)$ and x explained A1	[3]									
		(ii)	either low-energy photons absorbed (much) more readily or low-energy photons (far) less penetrating B1 low-energy photons do not contribute to X-ray image B1 low energy photons could cause tissue damage B1	[3]									
			[Total:	10]									

Q21.

10 (a) (i) density × speed of wave (in the medium)	B1	[1]
(ii) $\rho = (7.0 \times 10^6) / 4100$ = 1700 kg m ⁻³	A1	[1]
(b) (i) $I = I_T + I_R$	B1	[1]
(ii) 1. $\alpha = (0.1 \times 10^6)^2 / (3.1 \times 10^6)^2$ = 0.001	C1 A1	[2]
2. α≈ 1	A1	[1]
(c) either very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body or no gel, majority reflection with gel, little reflection when wave travels in or out of the body	M1 M1 A1 (M1) (M1) (A1)	[3]
Q22.		
9 (a) (i) edges can be (clearly) distinguished	B1	[1]
 (ii) e.g. size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size (any two, 1 each) further detail e.g. use of lead grid 	B2 B1	[3]
(b) X-ray image involves a <u>single</u> exposure CT scan: exposure of a <u>slice</u> from many different angles repeated for different slices CT scan involves a (much) <u>greater exposure</u>	B1 M1 A1 B1	[4]
Q23.		
11 (a) (i) $I/I_0 = \exp(-1.5 \times 2.9)$ = 0.013	C1 A1	[2]
(ii) $I/I_0 = \exp(-4.6 \times 0.95)$ = 0.013	A1	[1]
(b) attenuation (coefficients) in muscle and in fat are similar attenuation (coefficients) in bone and muscle / fat are different contrast depends on difference in attenuation	B1 B1 B1	[3]

10		/piezo-electric crystal cross crystal causes either centres of (+) and (–) charge to move	B1	
	alterna crystal when c	or crystal to change shape ating p.d. (in ultrasound frequency range) causes crystal to vibrate I cut to produce resonance crystal made to vibrate by ultrasound wave ating p.d. produced across the crystal	B1 B1 B1 M1 A1	[6]
Q25	•			
11		sharpness: ease with which edges of structures can be seen contrast: difference in degree of blackening between structures	B1 B1	[2]
	(b) ((i) $I = I_0 e^{-\mu x}$	C1	
		$I/I_0 = \exp(-0.20 \times 8)$ = 0.20	A1	[2]
	(i	ii) $I/I_0 = \exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$ (could be three terms) $I/I_0 = \exp(-0.20 \times 4) \times \exp(-12 \times 4)$ $I/I_0 = 6.4 \times 10^{-22}$ or $I/I_0 \approx 0$	C1 C1 A1	[3]
	(c) ((i) sharpness unknown/no	B1	[1]
	(i	ii) contrast good/yes (ecf from (b))	B1	[1]
Q26	•			
10	of one	r images taken from different angles / X-rays directed from different angles e section / slice (1) tages in the same plane (1)	B1	
	image image image	es combined to give image of section/slice es of successive sections/slices combined e formed using a computer	B1 B1 B1	
	that ca	e formed is 3D image (1) can be rotated/viewed from different angles (1) B-marks plus any two additional marks)	B2	[6]

Q27.

10	(a)	background reading = 19	1 [1]
	(b)	A = 2 B = 5 C = 9 D = 3 (Allow 1 mark if only subtracts background reading)	1 1
	(c)	(i) either 5, 14 or 14, 5 (A+D, B+C or v.v.)	1 [1]
		(ii) Three numbers and 'inside' number is 8 (B+D) Three numbers and 'outside' numbers are either 2,9 or 9,2 (A,C or v.v.) B	
Q28.			
10	(a)	pulse (of ultrasound) produced by quartz / piezo-electric crystal reflected from boundaries (between media) reflected pulse detected by the ultrasound transmitter signal processed and displayed intensity of reflected pulse gives information about the boundary time delay gives information about depth (four B marks plus any two from the four, max. 6) B1 B2	
	(b)	shorter wavelength smaller structures resolved / detected (not more sharpness) B1	
	(c)	(i) $I = I_0 e^{-\mu x}$ C1 ratio = $\exp(-23 \times 6.4 \times 10^{-2})$ C1 = 0.23 A1 (ii) later signal has passed through greater thickness of medium so has greater attenuation / greater absorption / smaller intensity A1	[3
Q29.			
10	(a)	spin/precess about direction of magnetic field either frequency of precession depends on magnetic field strength	B1 B1 B1 [3]
	(b)	enables location of precessing nuclei to be determined	B1 B1 B1 [3]

12		taker to giv repea	s of X-ray images (for one section/slice) I from different angles e image of the section/slice ated for many slices ild up three-dimensional image (of whole object)	M1 M1 A1 M1 A1	[5]	
			ction of background from readings on by three	C1 C1		
		P = 5	Q = 9 R = 7 S = 13			
		(four	correct 2/2, three correct 1/2)	A2	[4]	
Q31.	•					
11	(a)	X-ra	ay: flat/shadow/2D image regardless of depth of object/depth not indicated	B'		
		СТ	scan: built up from (many) images at different angles image is three-dimensional image can be rotated/viewed at different angles	B' B'	1	
	(b)	(i)	$I = I_0 e^{-\mu x}$ $0.25 = e^{-0.69x}$ x = 2.0 mm (allow 1 s.f.)	C [*]		
		(ii)	for aluminium, $I/I_0 = e^{-0.46 \times 2.4}$ = 0.33 fraction = 0.33 × 0.25 = 0.083	C ²		
		(iii)	gain/dB = $10 \lg(I/I_0)$ = $10 \lg(0.083)$ = (-) 10.8 dB (allow 2 s.f.)	C ²		
			with negative sign	B		
Q32.	•					
11	(a	alu	ay beam contains many wavelengths minium filter absorbs long wavelength X-ray radiation t would be absorbed by the body (and not contribute to the image)	B1 M1 A1	[3]	
	(b	and X-r	scan consists of (many) X-ray <u>images</u> of a slice d there are many slices ay image is a single exposure much) greater exposure with CT scan	M1 A1 B1 B1	[4]	Q33.

11 (a) product of density and speed M1
density of medium, speed of wave in medium
(not "speed of light", 0/2)

[2]

(b) (i) $\alpha = (6.4 - 1.7)^2/(6.4 + 1.7)^2$ C1 A1 [2]

(ii) $I/I_0 = e^{-\mu x}$ C1 = $\exp{(-23 \times 3.4 \times 10^{-2})}$ C1 = 0.46 A1 [3]

(iii) $I_R/I = (0.46)^2 \times 0.34$ C1 = 0.072 A1 [2]